Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Art and ITER | Two sisters, two suns and a monument to fusion

    Amid the gentle slopes of Asciano, Italy, there stands a stone window that frames the Sun on the summer solstice. It looks as though it might have always been t [...]

    Read more

  • Staff | The men and women of ITER

    They hail from Ahmedabad and Prague ... from Naka and Moscow ... from Seoul, Hefei, Atlanta and hundreds of other towns and cities across the 35 nations partici [...]

    Read more

  • ITER Talks | All about ITER and fusion

    Beginning this autumn, the ITER Organization will be launching a new video series to inform, inspire and educate. The first video—introducing the series and off [...]

    Read more

  • Image of the week | A majestic components enters the stage

    The floor of the Assembly Hall is an ever-changing stage. Like characters in a grand production, components of all size and shapes make a spectacular entry, pl [...]

    Read more

  • Magnet system | A set of spares for the long journey

    In about five years, ITER will embark on a long journey through largely uncharted territory. Conditions will be harsh and—despite all the calculations, modellin [...]

    Read more

Of Interest

See archived entries

Simulations shed new light on plasma confinement

A global particle-in-cell simulation uses Weixing Wang's GTS code to show core turbulence in a tokamak. Image courtesy of Stephane Ethier, PPPL (Click to view larger version...)
A global particle-in-cell simulation uses Weixing Wang's GTS code to show core turbulence in a tokamak. Image courtesy of Stephane Ethier, PPPL
A research team led by William Tang of the Department of Energy's (DOE's) Princeton Plasma Physics Laboratory (PPPL) is developing a clearer picture of plasma confinement properties in an experimental device that will pave the way to future commercial fusion power plants.

Tang, who is also a professor at Princeton University, focuses on advanced simulation capabilities relevant to ITER, a multibillion-dollar international experimental device being built in France and involving the partnership of seven governments representing more than half of the world's population.

Click here to read the full story.


return to the latest published articles