Subscribe options

Select your newsletters:


Please enter your email address:

@

News & Media

Latest ITER Newsline

  • Worksite postcards | Under fog and autumn light

    Due to its proximity to the Durance River and to the narrow gully spanned by the Bridge of Mirabeau, the area around ITER often experiences a peculiar meteorolo [...]

    Read more

  • Assembly Hall | Another massive paint job

    By the end of December, the massive painting job in the Assembly Hall will be complete and the building's floor will be as white and pristine as the landscape i [...]

    Read more

  • ITER India | Testing a neutral beam for diagnostics

    Every 23 seconds during fusion operation, a probe beam will penetrate deep into the core of the ITER plasma to aid in the detection of helium ash—one of fusion' [...]

    Read more

  • Welded attachments | Follow the laser projections

    How do you position 150,000 welded attachments on to a vacuum vessel the size of a house, each one needing to be accurately placed to less than a 4 mm target? [...]

    Read more

  • Visit | Our neighbour the Nobel

    In 2018, the Nobel Prize in Physics was awarded to Gérard Mourou for his work on ultra-short, extremely high-intensity laser pulses—the so-called 'chirped pulse [...]

    Read more

Of Interest

See archived entries

Successful European collaboration on gyrotron prototype

Representatives from the European Domestic Agency, the European Gyrotron Consortium, and Thales Electron Devices stand next to the continuous-wave gyrotron prototype, which has successfully passed final factory acceptance tests. (Click to view larger version...)
Representatives from the European Domestic Agency, the European Gyrotron Consortium, and Thales Electron Devices stand next to the continuous-wave gyrotron prototype, which has successfully passed final factory acceptance tests.
In ITER, powerful radio-frequency-generating devices called gyrotrons will generate microwave beams over a thousand times more powerful than a traditional microwave oven. These gyrotrons are part of the electron cyclotron heating system, one of the three systems that will heat the plasma in the ITER machine to 150 million degrees Celsius.

In ITER, 24 gyrotrons will provide a total combined heating power of 24 MW. R&D work is progressing on gyrotrons in Europe, India, Japan and Russia as part of the development of the electron cyclotron system.

Europe, responsible for the in-kind procurement of six gyrotrons, is working on the development of the final gyrotrons in collaboration with the European Gyrotron Consortium—made up of the European fusion laboratories KIT (Germany), the Swiss Plasma Center (Switzerland), HELLAS (Greece), and CNR (Italy), as well as the German USTUTT and Latvian ISSP as third parties—and Thales Electron Devices (France). Two industrial prototypes are currently in fabrication: a short-pulse gyrotron, capable of producing radio frequency of 1 MW for a few milliseconds; and a longer-pulse continuous-wave prototype, capable of producing a radiofrequency wave for several minutes.

Following the pre-validation of the short-pulse gyrotron design in April 2015, the European Domestic Agency recently announced that the continuous-wave gyrotron prototype has successfully passed the final factory acceptance tests, in an important sign of progress for the program.

The factory acceptance tests for the long-pulse continuous-wave gyrotron prototype, which will produce radiofrequency microwaves of 1MW of output power for a duration of several minutes, took place at the Thales facility near Paris. The tests comprised the checking of ultra-high vacuum level in order to guarantee long-pulse stable operation, the cooling circuits for dissipating the high heat fluxes of some internal components, and the high voltage withstand-off of the different gyrotron parts which are needed to accelerate the electrons at good efficiency.

The completion of the factory acceptance tests is an important milestone, bringing the European agency closer to the critical phase of validation of the European gyrotron for ITER.

Read the full story on the European Domestic Agency website.


return to the latest published articles