Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Thermal shield repair | Where are we at?

    Fitting the vacuum vessel sectors like a jacket, lining the inner wall of the cryostat, or covering the sides of vertical coil gravity supports, ITER's thermal [...]

    Read more

  • Assembly prep | Reviewing plans for in-vessel installation

    A thorough review of all 'in-vessel' assembly scope was organized by the ITER Machine Assembly Program in early February, with the active participation of senio [...]

    Read more

  • Image of the week | Last measurements before campaign

    In order to precisely identify the bevel regions that need to be rectified, metrologists from the SIMANN (SIMIC-Ansaldo) consortium are performing ultra-precise [...]

    Read more

  • Neutral Beam Test Facility | After upgrades, SPIDER testbed set to restart

    After a two-year shutdown for upgrades, the SPIDER testbed at the ITER Neutral Beam Test Facility in Padua, Italy, is preparing for commissioning and operation. [...]

    Read more

  • ITER Research Plan | Jointly preparing a new blueprint

    As part of work underway to update the ITER Project Baseline, a group of experts nominated by the Members met in February to evaluate the new blueprint for achi [...]

    Read more

Of Interest

See archived entries

Successful European collaboration on gyrotron prototype

Representatives from the European Domestic Agency, the European Gyrotron Consortium, and Thales Electron Devices stand next to the continuous-wave gyrotron prototype, which has successfully passed final factory acceptance tests. (Click to view larger version...)
Representatives from the European Domestic Agency, the European Gyrotron Consortium, and Thales Electron Devices stand next to the continuous-wave gyrotron prototype, which has successfully passed final factory acceptance tests.
In ITER, powerful radio-frequency-generating devices called gyrotrons will generate microwave beams over a thousand times more powerful than a traditional microwave oven. These gyrotrons are part of the electron cyclotron heating system, one of the three systems that will heat the plasma in the ITER machine to 150 million degrees Celsius.

In ITER, 24 gyrotrons will provide a total combined heating power of 24 MW. R&D work is progressing on gyrotrons in Europe, India, Japan and Russia as part of the development of the electron cyclotron system.

Europe, responsible for the in-kind procurement of six gyrotrons, is working on the development of the final gyrotrons in collaboration with the European Gyrotron Consortium—made up of the European fusion laboratories KIT (Germany), the Swiss Plasma Center (Switzerland), HELLAS (Greece), and CNR (Italy), as well as the German USTUTT and Latvian ISSP as third parties—and Thales Electron Devices (France). Two industrial prototypes are currently in fabrication: a short-pulse gyrotron, capable of producing radio frequency of 1 MW for a few milliseconds; and a longer-pulse continuous-wave prototype, capable of producing a radiofrequency wave for several minutes.

Following the pre-validation of the short-pulse gyrotron design in April 2015, the European Domestic Agency recently announced that the continuous-wave gyrotron prototype has successfully passed the final factory acceptance tests, in an important sign of progress for the program.

The factory acceptance tests for the long-pulse continuous-wave gyrotron prototype, which will produce radiofrequency microwaves of 1MW of output power for a duration of several minutes, took place at the Thales facility near Paris. The tests comprised the checking of ultra-high vacuum level in order to guarantee long-pulse stable operation, the cooling circuits for dissipating the high heat fluxes of some internal components, and the high voltage withstand-off of the different gyrotron parts which are needed to accelerate the electrons at good efficiency.

The completion of the factory acceptance tests is an important milestone, bringing the European agency closer to the critical phase of validation of the European gyrotron for ITER.

Read the full story on the European Domestic Agency website.


return to the latest published articles