Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Cryostat thermal shield | A "strong back" for a fragile component

    The lower cylinder thermal shield is a large silver-plated component, circular in shape and five metres tall, which fits inside the depression in the cryostat b [...]

    Read more

  • Diagnostic shielding | B4C ceramic bricks prove their worth

    A number of materials can effectively shield diagnostic equipment from the neutron flux coming from the plasma. To find the best one, the diagnostics team at IT [...]

    Read more

  • Image of the week | The cryostat top lid, batch after batch

    Batch after batch, the elements for the top lid of the ITER cryostat keep arriving from India. As of today, 7 out of the 12 required segments have been delivere [...]

    Read more

  • Cooling water system | The tanks within a tank

    Deep inside the bowels of the Tokamak Building, the entrance to one of most spectacular rooms of the whole installation resembles that of a broom cupboard. [...]

    Read more

  • ITER assembly | Last major assembly contract signed

    One year after finalizing two major machine assembly contracts, the ITER Organization has chosen the contractors who will carry out assembly and installation ac [...]

    Read more

Of Interest

See archived entries

More tooling on order for poloidal field coil fabrication

In the Poloidal Field Coils Winding Facility, successive workstations will be installed to wind, resin impregnate, and finally stack and assemble the four largest poloidal field coils. 3D image: Elytt Energy/Christian Lünig-VG Bild und Kunst (Click to view larger version...)
In the Poloidal Field Coils Winding Facility, successive workstations will be installed to wind, resin impregnate, and finally stack and assemble the four largest poloidal field coils. 3D image: Elytt Energy/Christian Lünig-VG Bild und Kunst
Producing ITER's ring-shaped poloidal field magnets is a multi-stage process requiring at least 18 months per coil. Lengths of niobium-titanium (NbTi) superconductor are progressively wound into flat, spiralled coils called double pancakes, impregnated with resin, and finally stacked and assembled to form finished magnets that weigh between 200 and 400 tonnes.

The European Domestic Agency completed an on-site manufacturing facility in 2012 for the fabrication of the largest poloidal field coils and, today, the building is being progressively equipped with the handling and tooling equipment required for the first qualification activities to get underway in mid-2016.

From a contractual point of view, six work packages will cover the full process of poloidal field coil fabrication, including overall engineering integration, tooling, site and infrastructure management, manufacturing, and cold testing. Contracts signed to date by the European Domestic Agency include those for winding tooling (SEA ALP Italy), site and infrastructure (Dalkia-Veolia France), engineering integration (ASG Superconductors, Italy) and, in the latest news, the contract for the supply of handling and impregnation tooling.

This 3D image shows the type of gantry crane that will be used to support loads of 400 tons. © Elytt Energy (Click to view larger version...)
This 3D image shows the type of gantry crane that will be used to support loads of 400 tons. © Elytt Energy
Impregnation is the step in fabrication that intervenes after the conductor has been wound and insulated. The double pancakes are lowered by crane into moulds for vacuum pressure impregnation (VPI) with epoxy resin. Under the effect of heat, the resin bonds each double pancake into a rigid assembly. 

The contract signed between the European agency and a consortium formed by Elytt Energy and Alsymex (Alsyom and SEIV) includes the design and manufacturing studies, fabrication, and on-site assembly, commissioning and testing of the impregnation equipment. Handling equipment is also included in the scope of the contract, such as specialized equipment to lift, insulate and stack the pancake layers, a gantry crane with a load capacity of 400 tonnes, and assembly stations.

Read the original article on the European Domestic Agency website.


return to the latest published articles