Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Tokamak assembly | Extra support from below

    Underneath the concrete slab that supports the Tokamak Complex is a vast, dimly lit space whose only features are squat, pillar-like structures called 'plinths. [...]

    Read more

  • Vacuum standards and quality | Spreading the word

    As part of a continuing commitment to improve quality culture both at the ITER Organization and at the Domestic Agencies, the Vacuum Delivery & Installation [...]

    Read more

  • Test facility | How do electronics react to magnetic fields?

    A tokamak is basically a magnetic cage designed to confine, shape and control the super-hot plasmas that make fusion reactions possible. Inside the ITER Tokamak [...]

    Read more

  • ITER Robots | No two alike

    More than 500 students took part in the latest ITER Robots challenge. Working from the same instructions and technical specifications, they had worked in teams [...]

    Read more

  • Data archiving | Operating in quasi real time

    To accommodate the first real-time system integrated with the ITER control system, new components of the data archiving system have been deployed. Data archivi [...]

    Read more

Of Interest

See archived entries

Electricity supply

Power to the magnets

The 50-tonne box-shaped transformer hovers about a metre and a half above ground. In a carefully calculated procedure, a crane moves the device to its final destination—a concrete slab just outside one of the two Magnet Power Conversion buildings.

This transformer is the first of 18 to be delivered by Korea. It is part of equipment being installed at the Magnet Power Conversion buildings to convert electricity to the specific configuration of voltage and current needed by the ITER magnets. (Click to view larger version...)
This transformer is the first of 18 to be delivered by Korea. It is part of equipment being installed at the Magnet Power Conversion buildings to convert electricity to the specific configuration of voltage and current needed by the ITER magnets.
Two days later, a second transformer is positioned on the opposite side of the building—this one weighing 20 tonnes.

These are the first two transformers to be delivered out of a set of 18 procured by Korea from the company Hyosung. They will be integrated into a complex arrangement of equipment dedicated to converting the power supplied by the French grid to the voltage required for the operation of ITER's magnet system. 

The magnets will run on electricity with a specific configuration of low voltage and high current. In a sequence of two steps the voltage is first converted from 400 kV to 66 or 22 kV, and then to the voltage level required by the corresponding converters. For the larger transformer installed last week it will be approximately 1kV; for the smaller, the voltage required is 0.327 kV.

The newly positioned transformers will come into action in the second step. The 20-tonne transformer will ensure electricity supply to the correction coils that will be inserted between the poloidal and toroidal field coils, while the 50-tonne transformer is linked to the plasma vertical stabilization circuit.

Both the correction coils and the vertical stabilization coils will fine-tune the plasma inside the vacuum chamber.

In a later step, the transformers outside the Magnet Power Conversion buildings will be linked to converter bridges or rectifiers on the inside. They function like adapters, converting the alternating current (AC) to direct current (DC) before it is fed into the tokamak to power the magnets.

In April, the next four transformers will arrive from Korea; by May 2019, all Korean-produced transformers will be installed. Together with transformers procured by China, there will be 32 converter units to supply the ITER magnet system.


return to the latest published articles