Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Central solenoid | 1st delivery celebrated on both sides of the Atlantic

    Standing 18 metres tall at the very heart of the ITER Tokamak, the central solenoid will generate an intense magnetic field which, in turn, will induce an elect [...]

    Read more

  • Tooling | Radial beam fits just right

    When describing operations inside the ITER in the assembly theatre, one is invariably tempted to call up images from the realm of science fiction. How else to c [...]

    Read more

  • Fusion world | Curtain call for the COMPASS tokamak

    After 12 years of operation and 21,000 plasma shots, the Czech tokamak COMPASS ceased operation on 20 August 2021. The tokamak will now be disassembled to make [...]

    Read more

  • Engineering | US to deliver "tough" electronics to ITER

    ITER, a machine that will imitate the sun, will also mimic the sun's extreme environment: intense heat, strong magnetic fields and radiation. A team at US I [...]

    Read more

  • Image of the week | The lighthouse in the pit

    Like a lighthouse (without a beacon) the central column rises more than 20 metres above the floor of the assembly pit. The massive structure does not belong to [...]

    Read more

Of Interest

See archived entries

Vacuum vessel

Sector #6 is leak tight

The first ITER vacuum vessel sector has passed a helium leak test on site with flying colours.

Molecules of any nature leaking into the plasma chamber could contaminate the plasma and potentially cause the fusion reaction to stop. Vacuum vessel sector #6 passed its helium leak test with flying colours on 4 September 2020, confirmed to be leak tight to two orders of magnitude better than acceptance criteria. (Click to view larger version...)
Molecules of any nature leaking into the plasma chamber could contaminate the plasma and potentially cause the fusion reaction to stop. Vacuum vessel sector #6 passed its helium leak test with flying colours on 4 September 2020, confirmed to be leak tight to two orders of magnitude better than acceptance criteria.
Back in March 2020, as experts from the Korean Domestic Agency and Hyundai Heavy Industries were carrying out final quality control evaluations, vacuum vessel sector #6 was subjected to a series of factory acceptance tests, which it passed successfully.

The most critical of these—the helium leak test—is a way to ensure at the end of the manufacturing process that no leaks in the many welds in a vacuum vessel sector have been overlooked or allowed to pass, and it demonstrates the absolute leak tightness of the component.

In a typical year, an observer/quality control inspector from the ITER Organization as well as an inspector from the Agreed Notified Body (authorized by the French Nuclear Regulator ASN to assess the conformity of components in the pressure equipment category) would have been present for the tests in Korea. But because these visits were rendered impossible by COVID-19 travel restrictions—and not wanting to delay the shipment of the component—it was agreed that acceptance activities would be split between Hyundai Heavy Industries and the ITER Organization ,with Hyundai responsible for demonstrating the safety leak rate requirement at the company's premises and the ITER Organization responsible for the more stringent operational leak rate requirement as part of acceptance tests on site.

On 2 September, approximately one month after the component's arrival, the ITER vacuum team enclosed the 440-tonne vacuum vessel sector in a plastic bag filled with 100 cubic metres of helium gas—or the equivalent of 10,000 party balloons—while pumping the sector's interspace to create a vacuum.

As helium—the second lightest element—can pass through any crack in the vessel boundaries, no matter how small, any presence of helium in the interspace would be detected by the leak detection system based on ultra-sensitive mass spectrometry.

The result was completely successful, with no leaks above the limit of detection found. Vacuum vessel sector #6 is confirmed to leak tight to 10-10 Pam³s-1, which is two orders of magnitude tighter than the acceptance criteria. The test was carried out with the Agreed Notified Body inspector as witness.

"This is a major achievement," says Liam Worth of the Vacuum Design and Delivery Section. "Normally to reach this leak test sensitivity one would expect to bake the vacuum vessel sector to condition the interspace for the test. However for the sector #6 baking was not required as the stringent cleanliness requirements of the shield blocks installed in the interspace have been respected—this is good news as it is likely that other sectors will not require baking either, thus saving time and money."

The test protocol for vacuum vessel leak testing, as well as the equipment, was developed by the ITER vacuum team. (See more here).

"The idea of performing the leak test in this way was first proposed some 14 years ago and we have been refining the procedure through test qualifications since," says Robert Pearce, Vacuum and Design and Installation Section Leader. "We are all looking forward to repeat test successes as the other sectors are manufactured and delivered."



return to the latest published articles