Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Deputy Director-General | Yutaka Kamada, Science & Technology

    In his late childhood and early teens, Yutaka Kamada developed two passions: one for growing cactus, the other for fusion energy. Half a century later, his [...]

    Read more

  • Images of the week | Yet another magnet feeder from China

    This in-cryostat feeder will supply electrical power and cryogenic fluids to some of the top correction coils of the ITER machine. ITER will rely on 31 mag [...]

    Read more

  • Gyrotrons | India successfully demonstrates ITER power and pulse requirements

    As a part of its in-kind commitments to the project, ITER India will deliver two radio-frequency-based power sources (or 'gyrotrons") with state-of-the-art [...]

    Read more

  • Neutral beam power supply | Lightning-power voltage

    In January 2021, preparatory works began for the construction of two large buildings designed to accommodate a unique set of electrical equipment. A little more [...]

    Read more

  • MITICA | Cryopump passes site acceptance tests

    Cryopumps, which play an essential role in ITER, are not what one has in mind when picturing a pump. A conventional pump creates negative pressure to suck in fl [...]

    Read more

Of Interest

See archived entries

Cryolines

An elbow through the wall

Cool is in high demand in the ITER Tokamak. Magnets need it to achieve superconductivity, the thermal shield to limit heat exchanges with the outside environment, cryopumps to trap particles and achieve high vacuum, and HTS current leads to minimize heat loads to the cryogenic system. "Cool" originates in the ITER cryoplant, where helium is processed before reaching its different clients by way of a five-kilometre network of multi-process pipes called cryolines that are provided by ITER India.

With the insertion of this massive elbow-shaped spool, total cryoline installation inside the Tokamak Building is now close to 75% complete. Inserted into a wall opening, the spool will connect the cryolines installed inside the building to those coming from the cryoplant along the elevated ''cryobridge.'' (Click to view larger version...)
With the insertion of this massive elbow-shaped spool, total cryoline installation inside the Tokamak Building is now close to 75% complete. Inserted into a wall opening, the spool will connect the cryolines installed inside the building to those coming from the cryoplant along the elevated ''cryobridge.''
On Monday 17 October, a massive elbow-shaped cryoline spool was inserted into the sleeve of a pre-formed opening in the exterior wall of the Tokamak Building (Level 3). It will connect the cryolines installed inside that building to those coming from the cryoplant along the elevated "cryobridge."

Introducing a cylindrical object into a circular opening of corresponding diameter is something toddlers do all the time when they play with shape sorters. When the object is a delicate high-tech component that measures 8 metres in length, 1 metre in diameter and weighs in excess of 5.5 tonnes, things are a bit more complicated. A special crane—powerful, but small enough to operate in the congested environment of the Tokamak Building—needs to be brought inside. Then, as the load is attached to the tip of the telescopic boom, the crane's forward movements need to be as smooth as possible to avoid a "pendulum effect" that would be detrimental to the complex and delicate component. And finally, operators must be skilled enough to manoeuvre the crane and align the spool with the opening in the wall.

The operation was completed in less than 90 minutes. With the insertion of this strategic, elbow-shaped spool, the heaviest of the whole cryoline system, total cryoline installation inside the Tokamak Building is now close to 75% complete.



return to the latest published articles