Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Industrial milestone | First cryopump passes all tests

    The serial production of ITER's powerful torus and cryostat cryopumps is progressing at Research Instruments, Germany, on behalf of the European Domestic Agency [...]

    Read more

  • Cryoline installation | Ball joints against earthquakes

    In order to reach clients inside the Tokamak Building, cooling fluids produced by the ITER cryoplant flow through many kilometres of highly sophisticated p [...]

    Read more

  • The changing fusion landscape | ITER hosting private sector workshop

    Take out your smart phone and search your favourite news site for 'nuclear fusion' or 'fusion energy.' On any given day, you will find articles discussing break [...]

    Read more

  • Image of the Week | Advisory committee season

    The 30th Meeting of the ITER Council Science and Technology Advisory Committee (STAC-30) took place at ITER Headquarters from 13 to 16 May. The Science and Tech [...]

    Read more

  • ITER Design Handbook | Preserving the vital legacy of ITER

    The contributions that ITER is making to fusion physics and engineering—through decades of decisions and implementation—are delivering insights to the fusion co [...]

    Read more

Of Interest

See archived entries

Cryolines

An elbow through the wall

Cool is in high demand in the ITER Tokamak. Magnets need it to achieve superconductivity, the thermal shield to limit heat exchanges with the outside environment, cryopumps to trap particles and achieve high vacuum, and HTS current leads to minimize heat loads to the cryogenic system. "Cool" originates in the ITER cryoplant, where helium is processed before reaching its different clients by way of a five-kilometre network of multi-process pipes called cryolines that are provided by ITER India.

With the insertion of this massive elbow-shaped spool, total cryoline installation inside the Tokamak Building is now close to 75% complete. Inserted into a wall opening, the spool will connect the cryolines installed inside the building to those coming from the cryoplant along the elevated ''cryobridge.'' (Click to view larger version...)
With the insertion of this massive elbow-shaped spool, total cryoline installation inside the Tokamak Building is now close to 75% complete. Inserted into a wall opening, the spool will connect the cryolines installed inside the building to those coming from the cryoplant along the elevated ''cryobridge.''
On Monday 17 October, a massive elbow-shaped cryoline spool was inserted into the sleeve of a pre-formed opening in the exterior wall of the Tokamak Building (Level 3). It will connect the cryolines installed inside that building to those coming from the cryoplant along the elevated "cryobridge."

Introducing a cylindrical object into a circular opening of corresponding diameter is something toddlers do all the time when they play with shape sorters. When the object is a delicate high-tech component that measures 8 metres in length, 1 metre in diameter and weighs in excess of 5.5 tonnes, things are a bit more complicated. A special crane—powerful, but small enough to operate in the congested environment of the Tokamak Building—needs to be brought inside. Then, as the load is attached to the tip of the telescopic boom, the crane's forward movements need to be as smooth as possible to avoid a "pendulum effect" that would be detrimental to the complex and delicate component. And finally, operators must be skilled enough to manoeuvre the crane and align the spool with the opening in the wall.

The operation was completed in less than 90 minutes. With the insertion of this strategic, elbow-shaped spool, the heaviest of the whole cryoline system, total cryoline installation inside the Tokamak Building is now close to 75% complete.



return to the latest published articles