Enable Recite

Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Data | Archiving 20 gigabytes per second—and making it usable

    One of the main deliverables of ITER is the data itself—and there will be a tremendous amount of it to store and analyze. During First Plasma, the highest produ [...]

    Read more

  • Electrical tests | High voltage, high risk

    In the southern part of the construction platform, a one-hectare yard hosts some of the strangest-looking components of the entire ITER installation. Rows of to [...]

    Read more

  • Vacuum vessel | First sector safely docked

    It was 8:00 p.m. on Tuesday 6 April and something quite unusual happened in the ITER Assembly Hall: applause spontaneously erupted from the teams that h [...]

    Read more

  • Remote ITER Business Meeting | Virtual interaction, tangible opportunities

    While the advent of Covid-19 has not stopped the relentless advancement of the ITER Project, it has certainly prompted ingenuity in how ITER conducts its work. [...]

    Read more

  • Manufacturing | Europe completes pre-compression rings

    The French company CNIM (Toulon) has produced a tenth pre-compression ring for the ITER Project on behalf of Fusion for Energy, the European Domestic Agency. Th [...]

    Read more

Of Interest

See archived entries

Toroidal field coils

First ITER magnet arrives this year

A major milepost is projected for 2019 as the first of ITER's powerful, high-field magnets is scheduled to arrive from Japan. Let's take a look behind the scenes at the last-stage fabrication activities that are mobilizing the expertise and skill of heavy industry specialists under the responsibility of Japanese QST, the National Institutes for Quantum and Radiological Science and Technology.

The first Japanese winding pack was cold tested in October in this purpose-built cryogenic chamber at Mitsubishi. In a final step before shipment to ITER, the winding pack will be inserted in its structural case. (Click to view larger version...)
The first Japanese winding pack was cold tested in October in this purpose-built cryogenic chamber at Mitsubishi. In a final step before shipment to ITER, the winding pack will be inserted in its structural case.
Eleven years after completing the signatures on documents specifying technical and quality control requirements for the supply of nine toroidal field coils, the Japanese Domestic Agency is overseeing the last, spectacular sequences on its first production unit.

The toroidal field coils are the ITER magnets responsible for confining the plasma inside the vacuum vessel using high-performance, internally cooled superconductors called CICC (cable-in-conduit) conductors. Following the completion of the single largest superconductor procurement in industrial history, fabrication of the final coils is proceeding in Japan (9 toroidal field coils plus 10 coil structures to be sent to Europe) and Europe (10 toroidal field coils). Each coil is made up of a superconducting winding pack and surrounding stainless steel coil case.

The list of applicable superlatives is long—the toroidal field coils are the largest and most powerful superconductive magnets ever designed, with a stored magnetic energy of 41 GJ and a nominal peak field of 11.8 T. Together they weigh in at over 6,000 tonnes including superstructure, representing 60 percent of the magnetic array on the machine and over one-fourth of the Tokamak's total weight. They require 4.57 km of conductor per coil wound into 134 turns in the central core, or winding pack, of the magnet. And they have required the longest procurement lead-time of any ITER component, with six out of seven ITER Members involved in the production of 500 tonnes of niobium-tin superconducting strand (100,000 km) required for the toroidal field superconducting cables.
In the insert, the different elements of the toroidal field coils are shown: the superconducting winding pack (in green), and the inner (BP, AP) and outer (BU, AU) coil case sub-assemblies. QST—with the cooperation of Mitsubishi Heavy Industries, Ltd., Mitsubishi Electric Corporation, Hyundai Heavy Industries, and Toshiba Energy Systems & Solutions Corporation—will supply 9 toroidal field coils (assembly of winding packs and coil structures) plus another 10 coil structures to the ITER Project. (Click to view larger version...)
In the insert, the different elements of the toroidal field coils are shown: the superconducting winding pack (in green), and the inner (BP, AP) and outer (BU, AU) coil case sub-assemblies. QST—with the cooperation of Mitsubishi Heavy Industries, Ltd., Mitsubishi Electric Corporation, Hyundai Heavy Industries, and Toshiba Energy Systems & Solutions Corporation—will supply 9 toroidal field coils (assembly of winding packs and coil structures) plus another 10 coil structures to the ITER Project.
The first winding pack to come off the assembly line in Japan is currently undergoing final inspection by the industrial consortium Mitsubishi Heavy Industries/Mitsubishi Electric Corporation. The final sequence of testing involved high voltage tests, helium leak tests, and finally cryogenic tests, during which the winding pack is inserted into a cryostat (see top photo) and cooled to 80 K (-193 ˚C) to confirm leak tightness. With the successful end of cold testing, the winding pack is now undergoing post-cold-test helium leak tests and high voltage tests and will soon be ready for assembly with its toroidal field coil case. Five other winding packs are in various stages of production.

The 200-tonne case assemblies are also in series production. After successful fitting tests early last year, two have been delivered to Europe for insertion activities and a third will arrive this month; another completed production unit will remain at Mitsubishi for the assembly of the Japanese coil that is due at ITER in 2019. The fitting tests are the most delicate stage in the coil case manufacturing process, demonstrating that sub-assemblies manufactured and welded at different factory sites can be successfully paired with gap tolerances as strict as 0.25 to 0.75 mm along 15-metre weld grooves.

Please see the gallery below for a full update on manufacturing progress.



return to the latest published articles