Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • ITER Design Handbook | Preserving the vital legacy of ITER

    The contributions that ITER is making to fusion physics and engineering—through decades of decisions and implementation—are delivering insights to the fusion co [...]

    Read more

  • Electron cyclotron heating | Aligning technology and physics

    ITER, like other fusion devices, will rely on a mix of external heating technologies to bring the plasma to the temperature necessary for fusion. At a five-day [...]

    Read more

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

Of Interest

See archived entries

First batch of cryolines en route from India

Over five kilometres of cryolines (5.5 km) will be necessary to deliver cryogenic cooling power to the main "clients" in the Tokamak Building—the ITER magnets (45 percent), the thermal shield (40 percent), and the cryopumps (15 percent). During operation, nearly 25 tonnes of liquid helium at minus 269 °C will circulate throughout the ITER installation.

One of the three open-topped containers used to transport the first batch of cryolines from India. Cryolines are part of the important cryodistribution network that will bring cooling power produced in the on-site cryoplant to ''clients'' in the Tokamak Building. (Click to view larger version...)
One of the three open-topped containers used to transport the first batch of cryolines from India. Cryolines are part of the important cryodistribution network that will bring cooling power produced in the on-site cryoplant to ''clients'' in the Tokamak Building.
The ITER cryolines are a system of complex, multi-process, vacuum-insulated lines ranging from one to eight process pipes that will connect cryogenic components in the Tokamak Building to the cryoplant, where the required cooling power will be produced.

The cryolines form part of the ITER cryodistribution system, which also comprises forced flow cold boxes, pumps, valves and manifolds.

Under the responsibility of the Indian Domestic Agency the procurement of the cryolines has reached an important milestone. The first batch—nitrogen lines and relief lines totaling about 350 metres in length—has been produced and shipped in three 12-metre open-top containers. Special metallic frames were designed to ensure the secure transport of these items over sea and road.

On 17 May, a flag-off ceremony was held in Kalol at the supplier Inox India Limited in the presence of personnel from ITER India.
The three containers are travelling on board the CMA CGM TOSCA that departed from the Jawaharlal Nehru Port near Mumbai on 3 June.

Other cryolines batches will be shipped in a similar manner over the next 18 months.


return to the latest published articles