Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

  • Fusion world | The EU blueprint for fusion energy

    The EU Blueprint for Fusion Energy workshop, convened by the European Commission's Directorate-General for Energy, brought together key stakeholders in the fiel [...]

    Read more

  • Neutral beam injection | ELISE achieves target values for ITER

    Researchers at the Max Planck Institute for Plasma Physics in Garching, Germany, have generated the ion current densities required for ITER neutral beam injecti [...]

    Read more

Of Interest

See archived entries

Diagnostics

What is the plasma shape? Ask the flux loop

Inside the machine, the flux loop diagnostic will provide important information to operators on the boundary shape, energy and stability of the plasma.

More than 200 flux loop magnetic sensors will be installed on the interior surfaces of the vacuum vessel to pick up variations in the magnetic flux expelled by the plasma. In addition, four ex-vessel loops will completely circle the exterior of the plasma chamber. (Click to view larger version...)
More than 200 flux loop magnetic sensors will be installed on the interior surfaces of the vacuum vessel to pick up variations in the magnetic flux expelled by the plasma. In addition, four ex-vessel loops will completely circle the exterior of the plasma chamber.
In ITER, arrays of magnetic diagnostics generate signals to control the position and geometry of the plasma, measure current in the plasma and machine structures, and determine the magnetic equilibrium. Measurements go directly to the control systems, making the proper functioning of these instruments essential for machine operation. Equilibrium information will also underpin all other measurements in the machine, linking their information to the correct region in the plasma.

One array, the vacuum vessel flux loops, will be distributed over the surface of the vacuum vessel as 234 individual sensors. Formed from lengths of slim coaxial cable shaped into closed loops, each one senses variations of the magnetic flux expelled by the plasma. These variations create voltage in the closed loops, which can in turn be measured by electronics in the quiet zone of the Diagnostics Building. The flux variations are used to calculate evolution in the shape of the plasma.

For more than four years, the ITER Organization has been collaborating with industry to develop these sensors made from a particular type of mineral-insulated coaxial cable. The cable can withstand the harsh electromagnetic fields, radiation and temperature conditions inside the machine.

"In the most recent pre-qualification tender phase, we worked with specialists to arrive at cables that fully satisfy ITER's specifications," says Philippe Gitton, diagnostic engineer. "The selected supplier Thermocoax (France) has successfully developed 1.9- and 3.0-millimetre-thick coaxial cables with a copper core, alumina insulant, stainless steel sheathing, and an added layer of copper coating to reflect the microwaves and hence avoid over-heating."

Thin and light, but ever so important. Nearly two and a half kilometres of vacuum vessel flux loops (shown in orange on this sector) will help ITER operators determine magnetic equilibrium and shape. (Click to view larger version...)
Thin and light, but ever so important. Nearly two and a half kilometres of vacuum vessel flux loops (shown in orange on this sector) will help ITER operators determine magnetic equilibrium and shape.
ITER engineers will be in charge of overseeing the installation of the flux loops—work that will get off to a start as soon as the first vacuum vessel sector arrives at the Assembly Hall and continue as the individual sectors are assembled to form the final torus in the machine pit. The bulk of the coils are on the plasma side of the vessel, but four ex-vessel flux loops wrap around the full circumference of the vacuum vessel using special connections hidden between the thermal shield and the vessel.

"We will be forming the flux loops by hand on site from terminated cables provided by our supplier," says Gitton.

The loops hug the inner vacuum vessel wall, attached with novel fasteners that act as heatsinks in order to keep the temperature of the cables below 250 ˚C. A fastener is needed every six centimetres—so a total of 2.4 km of cable will require some 40,000 fasteners. Between clips, installers will use a specialized tool to add some curve to the cables, giving them the slight amount of play that will be needed as the vacuum vessel and loops expand and contract during different phases of operation and maintenance.

The first batch of equipment arrived last month, in respect of an ITER Council schedule milestone.


return to the latest published articles