Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Latest ITER Newsline

  • ITER Design Handbook | Preserving the vital legacy of ITER

    The contributions that ITER is making to fusion physics and engineering—through decades of decisions and implementation—are delivering insights to the fusion co [...]

    Read more

  • Electron cyclotron heating | Aligning technology and physics

    ITER, like other fusion devices, will rely on a mix of external heating technologies to bring the plasma to the temperature necessary for fusion. At a five-day [...]

    Read more

  • Poloidal field magnets | The last ring

    As the massive ring-shaped coil inched its way from the Poloidal Field Coils Winding Facility, where it was manufactured, to the storage facility nearby where i [...]

    Read more

  • Heat rejection | White "smoke" brings good news

    Like a plume of white smoke rising from a cardinals' conclave to announce the election of a new pope, the tenuous vapour coming from one of the ITER cooling cel [...]

    Read more

  • WEC 2024 | Energy on centre stage

    The global players in the energy sector convened in Rotterdam last week for the 26th edition of the World Energy Congress (WEC). The venue was well chosen, wit [...]

    Read more

Of Interest

See archived entries

Gyrotrons

In Russia, that makes two

In mid-May, factory acceptance tests were successfully carried out on the second gyrotron of the Russian procurement program by specialists at the Institute of Applied Physics and GYCOM Ltd.
 
Gyrotrons are complex devices that convert the energy of oscillating electrons into a microwave beam. Twenty-four units are under development for ITER, including eight in Russia, eight in Japan, six in Europe, and two in India. Factory tests for Russia's second gyrotron (pictured) were carried out in Nizhny Novgorod, Russia, at GYCOM Ltd. (Click to view larger version...)
Gyrotrons are complex devices that convert the energy of oscillating electrons into a microwave beam. Twenty-four units are under development for ITER, including eight in Russia, eight in Japan, six in Europe, and two in India. Factory tests for Russia's second gyrotron (pictured) were carried out in Nizhny Novgorod, Russia, at GYCOM Ltd.
Twenty-four energy-producing devices called gyrotrons will operate on ITER as part of the machine's electron cyclotron resonance heating system. These powerful sources of microwave radiation are tasked with a number of important missions: pre-ionization ("starting" the plasma), plasma heating and current drive, and the stabilization of local instabilities.

The first gyrotron was developed at the Institute of Applied Physics (Russian Academy of Sciences) back in 1964, generating 6W at 10GHz for continuous operation. Since then, scientists around the world have steadily increased gyrotron output power and, today, ITER needs are driving the program.

The tests conducted on the second gyrotron manufactured in Russia demonstrated full compliance with ITER Organization technical requirements (1 MW power at the required 170 GHz in continuous mode).


return to the latest published articles