Lettres d'information

Choisissez ce que vous souhaitez recevoir :

Merci de renseigner votre adresse de messagerie électronique :

@

Votre adresse email ne sera utilisée que dans le cadre de campagnes d'information ITER Organization auxquelles vous êtes abonné. ITER Organization ne communiquera jamais votre adresse email et autres informations personnelles à quiconque ou dans le cadre d'informations commerciales.

Si vous changez d'avis, il vous est possible de vous désinscrire en cliquant sur le lien 'unsubscribe' visible dans vos emails provenant d'ITER Organization.

Pour plus d'information, veuillez consulter notre Politique de confidentialité.

Actu & Médias

Egalement dans ce numero

  • A mi-chemin du premier plasma

    Quand on construit un immeuble, un pont, un tronçon d'autoroute, les tâches à accomplir s'enchaînent de manière quasi-linéaire. Du premier coup de pioche à la [...]

    Read more

  • Le Titan et son jumeau

    Dans le vaste hall d'assemblage qui jouxte le Bâtiment tokamak, un Titan attend son jumeau... Ces structures monumentales (22 mètres de haut, 800 tonnes), cap [...]

    Read more

  • Pourquoi faire si compliqué ?

    Des pièces d'acier hautes comme un immeuble de quatre étages et pesant plusieurs centaines de tonnes qui s'ajustent avec une précision inférieure au quart de m [...]

    Read more

Mag Archives

L'avènement des tokamaks

En 1968, la fusion était une science encore jeune. Les machines sur lesquelles s'appuyait la recherche étaient primitives, leurs performances décevantes. Porter un plasma à 1 million de degrés et le maintenir pendant quelques millisecondes relevait de l'exploit. Les spécialistes désespéraient — arriveraient-ils jamais à maîtriser le feu des étoiles ?

Doté d'un « chambre toroïdale et de bobines magnétiques » le tokamak s'est imposé, dès la fin des années 1960, comme la plus performante des machines de fusion. Son concept doit tout au physicien Lev Artsimovitch (1909-1973). Promoteur de la collaboration scientifique entre l'Est et l'Ouest, il considérait que l'énergie de fusion « serait disponible quand l'humanité en aurait besoin.» (Click to view larger version...)
Doté d'un « chambre toroïdale et de bobines magnétiques » le tokamak s'est imposé, dès la fin des années 1960, comme la plus performante des machines de fusion. Son concept doit tout au physicien Lev Artsimovitch (1909-1973). Promoteur de la collaboration scientifique entre l'Est et l'Ouest, il considérait que l'énergie de fusion « serait disponible quand l'humanité en aurait besoin.»
"Du point de vue scientifique, c'était une période assez confuse, se souvient Jean Jacquinot, ancien directeur du JET, à l'époque jeune physicien au CEA. En dépit des progrès accomplis, les machines à striction (Z-pinch), les stellarators, les levitrons, les superstators... tous les concepts qui étaient développés à l'époque se révélaient instables et le comportement des plasmas échappait largement à notre compréhension. »

Depuis le début de la décennie, sous l'égide de l'Agence internationale de l'énergie atomique (AIEA), les chercheurs européens, américains, japonais et soviétiques avaient pris l'habitude de se réunir, tous les trois ans, pour faire le point de leurs travaux. En 1968, le rendez-vous était fixé pour le 1er août à Novossibirsk, en Sibérie. On ne s'attendait à rien de particulier. On eut une énorme surprise.

Dans le souvenir de ceux qui y prirent part, la conférence de Novossibirsk résonne encore, cinquante ans plus tard, comme un « coup de tonnerre ». D'emblée, le physicien Lev Artsimovitch, qui dirigeait les recherches sur la fusion à l'Institut Kurchatov de Moscou, annonça que dans deux machines toroïdales, T3 et TM3, un plasma porté à la température de 10 millions de degrés avait conservé son énergie pendant 20 millisecondes. A Princeton, aux États-Unis, où les meilleurs résultats avaient été obtenus jusqu'alors, la température du plasma n'avait pas dépassé un million de degrés et le temps de confinement était demeuré très inférieur à la milliseconde.

Valery Chuyanov, ancien directeur-adjoint d'ITER (2008-2013), qui travaillait alors à l'Institut Kurchatov, se souvient de l'extrême prudence avec laquelle ces données avaient été présentées : « En fait, nous avions largement minimisé nos résultats... en dépit de ces précautions toutefois, la plupart des participants demeuraient incrédules. »

Boris Kadomtsev (1928-1998), qui succéda à Lev Artsimovitch à la tête de la recherche sur la fusion en Union soviétique était un grand physicien qui savait également dessiner. Il a « croqué » les membres de l'équipe britannique (Harry Jones, Nicol Peacock, Mike Forrest, Derek Robinson et Peter Wilcock) affairés à la mesure de la température du plasma dans le tokamak T-3. (Click to view larger version...)
Boris Kadomtsev (1928-1998), qui succéda à Lev Artsimovitch à la tête de la recherche sur la fusion en Union soviétique était un grand physicien qui savait également dessiner. Il a « croqué » les membres de l'équipe britannique (Harry Jones, Nicol Peacock, Mike Forrest, Derek Robinson et Peter Wilcock) affairés à la mesure de la température du plasma dans le tokamak T-3.
Si ces chiffres, même minorés, reflétaient la réalité, tout devenait possible : avec ces machines qu'ils appelaient « tokamak » (un acronyme de « chambre toroïdale, bobine magnétique ») les Soviétiques venaient de faire un bond de géant vers la maîtrise de l'énergie des étoiles.

Mais l'avaient-ils vraiment accompli? Et comment le vérifier ? Le problème était politique autant que technique. Même si la recherche sur la fusion était exceptionnellement « ouverte », les relations entre l'Est et l'Ouest demeuraient tendues. Et pour déterminer la température d'un plasma, les moyens étaient encore rudimentaires, les mesures imprécises.

Lev Artsimovitch, qui depuis dix ans œuvrait inlassablement pour une plus grande ouverture internationale (voir ITER Mag n°9, « Il y a 60 ans, les Soviétiques levaient le voile »), balaya les hésitations politiques. Des physiciens de l'agence atomique britannique venaient de développer une nouvelle technique de mesure de la température du plasma (fondée sur la diffusion de la lumière laser) ;  il les invita à venir « juger par eux-mêmes » les performances des deux petits tokamaks de l'Institut Kurchatov.

Moins de huit mois après le « coup de tonnerre » de Novossibirsk, l'équipe britannique, chargée de cinq tonnes de matériel, débarquait à Moscou. Elle allait y passer le plus clair de l'année 1969 et son verdict serait sans appel : oui, incontestablement, les données présentées à Novossibirsk reflétaient bien la réalité.

Dès lors, le monde de la fusion bascula dans une ère nouvelle. À Princeton, on transforma presque aussitôt le stellarator Model-C en tokamak ; au CEA, on se lança dans la construction de TFR (Tokamak de Fontenay-aux-Roses), qui allait dominer la recherche mondiale jusqu'à la fin des années 1970 ; partout on abandonna les concepts anciens pour les promesses de l'architecture nouvelle.

Un demi-siècle a passé et les tokamaks n'ont pas trahi les espoirs qu'ils avaient fait naître un jour d'été à Novossibirsk. Toujours plus puissants, toujours plus performants, capables de produire des plasmas toujours plus chauds et d'en confiner l'énergie toujours plus longtemps, ils ont conduit la recherche jusqu'au seuil de l'expérience décisive — celle qui, avec ITER, ouvrira la voie à une utilisation industrielle de l'énergie de fusion.