
Todd Evans (centre) receiving the award from Werner Burkart, IAEA Deputy Director General (left), and Mitsuru Kikuchi, Chairman of the Nuclear Fusion Board of Editors (right).
Photograph taken by Robert Tye.
"This is a landmark experimental paper demonstrating the efficacy of using resonant magnetic field perturbations (RMPs) for the suppression of large amplitude edge localized modes (Type I ELMs); a critical issue for ITER and other reactor-grade machines because of the erosion of the divertor target that would occur if ELMs are not controlled," writes the publisher. "This demonstration of ELM suppression without a reduction in H-mode global confinement performance has stimulated much subsequent work in the field, both experimental and theoretical, and encouraged the proposal that a similar RMP coil set be included in the design for ITER. The experiment was based on the expectation that ergodization of the edge magnetic fields could reduce the pressure gradient that drives MHD instability to trigger ELMs. The paper examined the extent to which this is borne out by experiment and raised plasma physics issues which are currently subject to intense examination."