Subscribe options

Select your newsletters:

Please enter your email address:

ITER International School
 (Click to view larger version...)
The ITER International School is held every two years with the goal of giving young scientists and engineers a taste of the stimulating, multi-disciplinary and challenging field that is nuclear fusion.

Organized for five days around a specific theme, the School offers lectures by leading specialists from research organizations within the ITER Members and from the ITER Organization, stimulating discussion sessions, and the opportunity for students to publicize their own research through poster presentations.

The School alternates between sites in Aix-en-Provence, France, organized by the University of Aix-Marseille, and sites within the ITER Members. There have been 10 editions since 2007. The next ITER International School is planned in Aix-en-Provence, France, in 2020.

Click on the links below for access to past editions and presentations. All material is downloadable.

IIS 2019 organizers (Korea Advanced Institute of Science and Technology)
Introduction to ITER
Alberto Loarte and Richard Pitts, ITER Organization
KSTAR to resolve critical issues for ITER and DEMO
Si-Woo Yoon, NFRI Korea
Korean contributions to ITER
Hyeon Gon Lee, ITER Korea and NFRI
Overview of the K-DEMO program
Y.S. Hwang, Seoul National University (Korea)
Basic fusion boundary plasma physics
D. Reiter, Jülich Forschungszentrum (Germany)
Introduction to H-mode plasmas: L-H transition, pedestal, ELMs
Ahmed Diallo, PPPL (US)
Power exhaust in ITER I: First wall
Richard Pitts, ITER Organization
Power exhaust in ITER II: Divertor
Richard Pitts, ITER Organization
Physics of divertor power exhaust beyond ITER
Hartmut Zohm, MPI für Plasmaphysik (Germany)
ELM-crash suppression using 3D magnetic fields
Yongkyoon In, UNIST and NFRI (Korea)
Active control of ELMs and small ELM/ELM-less regimes
M.E. Fenstermacher, LLNL @ DIII-D (US)
Power (and particle) fluxes during ELM-controlled scenarios and extrapolation towards ITER
Oliver Schmitz, University of Wisconsin-Madison (US)
ITER plasma-facing components
Mario Merola, ITER Organization
Shape design of plasma-facing components for stationary and transient power fluxes
J.P. Gunn, CEA IRFM (France)
Technology and manufacturing of plasma-facing components
K. Ezato, Japan Domestic Agency QST
Plasma-facing components beyond ITER - solid materials
F. Maviglia, EUROfusion
Plasma-facing components: Beyond ITER - liquid materials
Daniel Andruczyk, University of Illinois Urbana-Champaign (US)
IIS 2017 organizers (Aix-Marseille University, France)
IIS 2015 organizers (School of Nuclear Science and Technology of the University of Science and Technology of China, SNST-USTC)
Status of the ITER Project
Alberto Loarte, ITER Organization
China's magnetic confinement fusion program and CFETR
Jiangang Li, ASIPP (China)
ITER and pedestal physics
Alberto Loarte, ITER Organization
Scrape-off-layer (SOL) and pedestal physics
V. Naulin, DTU Technical University (Denmark)
Pulsed heat load effects on plasma-facing materials
Y. Ueda, Osaka University (Japan)
Instabilities, turbulence and transport
Jiaqi Dong, Southwestern Institute of Physics (China)
Physics of the H-mode pedestal and the EPED model
Philip B. Snyder, General Atomics (US)
Progress towards a predictive model of the L-H transition
Gary M. Staebler, General Atomics (US)
Experimental studies of low-intermediate-high confinement transition
J. Cheng, Southwestern Institute of Physics (China)
Effect of low-Z impurities on H-mode pedestal structure, performance and ELMs
Rajesh Maingi, Princeton Plasma Physics Laboratory (US)
The challenge of edge-localized-mode control in tokamaks with helical magnetic fields
R. Nazikian, Princeton Plasma Physics Laboratory (US)
Gyrokinetic simulation of tokamak edge plasma
C.S. Chang, Princeton Plasma Physics Laboratory (US)
Physical processes in the tokamak edge/pedestal
B. Scott, Max Planck Institute for Plasma Physics (Germany)
Edge radial electric field formation after the L-H transition
K. Kamiya, JAEA (Japan)
Microtearing modes in core and edge of tokamaks and their possible role in plasma transport
R. Ganesh, Institute for Plasma Research (India)
Collisional transport in tokamak geometry
Michele Romanelli, EUROfusion
Gyrofluid and gyrokinetic approaches for multi-scale turbulence simulation in tokamak plasmas
Jiquan Li, Kyoto University (Japan)
Hamiltonian structure in gyrokinetic theory
Joshua W. Burby
IIS 2014 organizers (Aix-Marseille University, France)
Nonlinear modelling of fast ion driven instabilities in fusion plasmas
S. Pinches, ITER Organization
Monte Carlo implementation of a guiding center Fokker-Planck kinetic equation
Taina Kurki-Suonio, Aalto University (Finland)
Plasma physics vis Vlasov simulations
Francesco Califano, University of Pisa (Italy)
Introduction to gyrokinetic theory and simulations
Greg Hammett, Princeton Plasma Physics Laboratory (US)
Numerical methods used in fusion science numerical modelling
Masatoshi Yagi, Rokkasho Fusion Institute (JAEA Japan)
Plasma simulations in the tokamak scrape-off layer
Paolo Ricci, Center for Research in Plasma Physics, EPFL (Switzerland)
Computational methods for plasma fluid equations
Guillaume Fuhr, Aix-Marseille University (France)
Wavelet transforms and their applications for ITER
Marie Farge, Ecole Normale Supériere (France)
Numerical methods for the gyrokinetic (GK) Vlasov equation
Eric Sonnendrücker, Max-Planck Institute for Plasma Physics (Germany)
Introduction to particle-in-cell gyrokinetic simulations
A. Bottino, Max-Planck Institute for Plasma Physics (Germany)
Integrated tokamak modelling: current status and future direction for ITER operation
Xavier Litaudon, CEA-IRFM (France)
Integrated modelling and simulation of toroidal plasmas
Atsushi Fukuyama, Kyoto University (Japan)
Simulation as a tool to improve wave heating in fusion plasmas: reality or dream?
S. Heuraux, University of Lorraine (France)
Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries
Kai Schneider, Aix-Marseille University (France)
Harnessing clusters of hybrid nodes with a sequential task-based programming model
Emmanuel Agullo, INRIA (France)
Task-based linear solvers for modern architectures
P. Ramet, INRIA (France)
Electromagnetic gyrokinetic simulation of turbulence in torus plasmas
A. Ishizawa, National Institute for Fusion Science (Japan)
Exascale needs and bottlenecks for semi-lagrangian gyrokinetic simulations of turbulence in tokamak plasmas - GYSELA code
V. Grandgirard, IRFM-CEA (France)
Kinetic simulations of neoclassical transport in tokamak plasmas
E.A. Belli, General Atomics (US)
MHD simulations for ITER
G. Huijsmans, ITER Organization
IIS 2012 organizers (Institute of Plasma Research India)
Radio-frequency heating and current drive in ITER: challenges and needs
D.J. Campbell, ITER Organization
Methods of redio-frequency current drive
Nathaniel J. Fisch, Princeton Plasma Physics Laboratory (US)
Fully non-inductive scenarios: FAST case modelling
Giuseppe Calabrò, ENEA (Italy)
Physics of Landau and cyclotron resonances: current generation and free energy extraction I
Jean-Marcel Rax, Ecole Polytechnique (France)
Numerical simulations of the radio-frequency-driven toroidal current in tokamaks
Yves Peysson, CEA-IRFM (France)
Physics and applications of electron cyclotron heating and current drive
R. Prater, General Atomics (US)
Experiments on radio-frequency heating and current drive
Ryuhei Kumazawa, National Institute for Fusion Science (Japan)
Electron cyclotron heating and current drive technology
Keishi Sakamoto, Japan Atomic Energy Agency
Self-consistent simulations of ICRH in tokamaks and stellarators
W.A. Cooper, Center for Research in Plasma Physics, EPFL (Switzerland)
Kinetic integrated modelling of heating and current drive in tokamaks
A. Fukuyama, Kyoto University (Japan)
Physics and technology of lower hybrid current drive in tokamaks
Tuong Hoang, CEA-IRFM (France)
Lagrangian and geometrical methods in the fundamental physics of waves and their application to plasma dynamics
I.Y Dodin, Princeton Plasma Physics Laboratory (US)
Physics and experimental results of KSTAR electron cyclotron resonance heating
Young-soon Bae, National Fusion Research Institute (Korea)
The physics and technology of radio-frequency heating and current drive in fusion plasmas
J.M. Noterdaeme, Max Planck Institute for Plasma Physics (Germany)
Physics of Landau and cyclotron resonances: current generation and free energy extraction II
Jean-Marcel Rax, Ecole Polytechnique (France)
Advances in lower hybrid current drive for the SST1 tokamak
P.K. Sharma, Institute for Plasma Research (India)
Some unsolved challenges in radio-frequency current drive
Nathaniel J. Fisch, Princeton Plasma Physics Laboratory (US)
Electron Bernstein waves in magnetic fusion
Martin O'Brien, Culham Centre for Fusion Energy (UK)
Ion cyclotron power source system for ITER - Indian in-kind contribution
A. Mukherjee, ITER India
Electron cyclotron power source system for ITER - Indian in-kind contribution
S.L. Rao, ITER India
High-power radio-frequency systems for heating on the Aditya and SST-1 tokamaks
S.V. Kulkarni, Institute for Plasma Research (India)
Electron cyclotron resonance heating systems in SST-1 and Aditya
B.K. Shukla, Institute for Plasma Research (India)
We're sorry, there is no content for this event, yet.
IIS 2010 organizers (Institute for Fusion Studies, The University of Texas at Austin)
Progress of the ITER Project
Gary Johnson, Deputy Director-General - Tokamak, ITER Organization
Physics of plasma control towards steady-state operation of ITER
M. Kikuchi, JAEA (Japan)
MHD and plasma control in ITER
Joseph Snipes, ITER Organization
Introduction to the science of control
M.L. Walker, General Atomics (US)
Plasma rotation in tokamaks
Chris Hegna, University of Wisconsin-Madison (US)
Control of non-axisymmetric magnetic fields in tokamaks
Allen Boozer, Columbia University (US)
High reliability operation and disruption control in tokamaks
David Humphreys, General Atomics (US)
Real time control of advanced scenarios for steady-state tokamak operation
Xavier Litaudon, CEA-IRFM (France)
Plasma current, position and shape control
G. de Tommasi, University of Naples (Italy)
Lessons from the RFP on magnetic feedback control of plasma stability
Piero Martin, Consorzio RFX (Italy)
Models for global plasma dynamics
F.L. Waelbroeck, University of Texas at Austin (US)
Fundamentals of magnetic island theory in tokamaks
Richard Fitzpatrick, University of Texas at Austin (US)
Predictive simulation of global instabilities in tokamaks
Stephen C. Jardin, Princeton Plasma Physics Laboratory (US)
Introduction to NTMs and role of rotation
Abhijit Sen, Institute for Plasma Research (India)
Sawtooth control
J.P. Graves, Center for Research in Plasma Physics, EPFL (Switzerland)
Nonlinear consequences of energetic particle instabilities
Boris Breizman, University of Texas at Austin (US)
Effects of 3D magnetic field structure to MHD equilibrium and stability
Yasuhiro Suzuki, National Institute for Fusion Science (Japan)
ELM control in tokamak plasmas
Yunfeng Liang, Forschungszentrum Jülich (Germany)
Error field tolerance and error field correction strategies for ITER
H. Reimerdes, Columbia University (US)
We're sorry, there is no content for this event, yet.
IIS 2008 organizers (Kyushu University, Japan)
Mission of ITER and challenges for the young
Kaname Ikeda, ITER Organization
The basis of ITER confinement
F. Wagner, Max Planck Institute for Plasma Physics (Germany)
Introduction to the theory of confinement
X. Garbet, CEA (France)
Working for ITER
Sachiko Ishizaka, ITER Organization
Computational knowledge for toroidal confinement physics
C.S. Chang, Korea Advanced Institute for Science and Technology
Design studies and plasma confinement
T. Tsunematsu, Japan Atomic Energy Agency
ITER construction: plant system integration
Eisuke Tada, ITER Organization; S. Matsuda, Japan Atomic Energy Agency
Tritium management in a fusion reactor
T. Tanabe, Kyushu University (Japan)
Tritium retention and removal in tokamaks
C.H. Skinner, Princeton Plasma Physics Laboratory (US)
Experimental achievements on plasma confinement and turbulence
Akihide Fujisawa, National Institute for Fusion Science (Japan)
Basic research of tritium confinement
D.J. Campbell, ITER Organization
Complementary studies of experiments
H. Yamada, National Institute for Fusion Science (Japan)
Integrated modelling of burning plasmas
A. Fukuyama, Kyoto University (Japan)
Kimitaka Itoh, National Institute for Fusion Science (Japan)
We're sorry, there is no content for this event, yet.