Subscribe options

Select your newsletters:

Please enter your email address:

@

Your email address will only be used for the purpose of sending you the ITER Organization publication(s) that you have requested. ITER Organization will not transfer your email address or other personal data to any other party or use it for commercial purposes.

If you change your mind, you can easily unsubscribe by clicking the unsubscribe option at the bottom of an email you've received from ITER Organization.

For more information, see our Privacy policy.

News & Media

Links

Of Interest

See archived articles

Conferences


Borated steel plate successfully fabricated

The solid steel plate now waits for further testing trials in a Tore-Supra workshop. Craig Hamlyn-Harris opens the wrap for the photographer.  (Click to view larger version...)
The solid steel plate now waits for further testing trials in a Tore-Supra workshop. Craig Hamlyn-Harris opens the wrap for the photographer.
Ultra-sonic inspection for volumetric defect detection. (Click to view larger version...)
Ultra-sonic inspection for volumetric defect detection.
Vladimir Barabash (left) and Kimihiro Ioki (right) during their visit to the manufacturing site in Austria. (Click to view larger version...)
Vladimir Barabash (left) and Kimihiro Ioki (right) during their visit to the manufacturing site in Austria.
The development of materials and technologies for application in ITER is a challenge. In the ITER vacuum vessel, for example, 40 millimetre-thick shielding plates made out of borated stainless steel (type 304B7) with about two percent boron content will be used for neutron shielding. However, it is quite a technological challenge to manufacture borated steel plates of that thickness at an industrial level, because steel with high boron content easily becomes hard and brittle.

Boron has been widely used in the nuclear industry because of its neutron absorption capability. High neutron absorption capability combined with sufficient mechanical properties and corrosion resistance make borated steel an attractive material. If you manage to overcome its brittleness.

In recent tests performed under an ITER R&D contract, the Austrian company BÖHLER Bleche GmbH & Co KG, has now proved it possible. Several trials have been performed to optimize the technological process to avoid crack formation and to achieve the required mechanical properties and the surface quality. Two plates have been produced and are now waiting in a storage room in Cadarache for further tests.


return to Newsline #113